Centro Italiano per la Riqualificazione Fluviale
Italian Centre for River Restoration
Viale Garibaldi 44/a 30173 – MESTRE (VENICE, ITALY)
Tel +39-041-615410

River Restoration: basic concepts

Andrea Nardini – Research & Coop.

Website: www.cirf.org
Email: info@cirf.org; a.nardini@cirf.org
RESTORATION: objective and means

- more safety
- allow anthropic activities
- satisfy recreation, aesthetics & identity
- improve rivers (existence value)
- reduce costs (investm.&management)
- enhance landscape and increase urban asset value
OBJECTIVE
river “HEALTH”
Hydraulic RISK
RISK: classic hydraulic approach and its effects
RISK: classic hydraulic approach and its effects
Increase efficiency, confine flow:
⇒ levees, canalization

+ protects against events with:

\[T \leq T^* \quad (200) \]

- BUT..... less space to river: accelerated flow, increased peak, lower energy dissipation
RISK: classic hydraulic approach and its effects Po river (Italy)
Po river (Italy): result

today...

1954

1705
The “safe conditions” paradox

⇒ the risk increased !!
In addition, climate change …
Urban planning?
Levees for or against safety??

... FRAGILITY!

RISK: $R_{200} = 0$?
RISK: $R_T > 0$!
$R_T(\infty) >> 0$!!

\Rightarrow FRAGILITY HIGH....!!!
An approach really “CLASSIC”!

A touch of history

Montichiari
1805
(Archivio Stato MI)
← 1500
← 1300
Hydraulic approach: who pays!? infrastructuring = Taxes in biberon!

Carissimo neonato, benvenuto in questo mondo! Ecco la tua prima cartella delle tasse sui fiumi:

- argini € 25,00
- difese spondali € 17,00
- briglie € 9,80
- dighe € 7,50
- taglio vegetazione € 4,30
- rimozione sedimenti € 4,30
- pulizia tombamenti € 2,50
- derivazioni € 3,80
- canalizzazioni € 13,00
- bonifiche € 15,50
- fognature € 9,00
- acquedotto € 9,00
- depurazione € 5,60
- pennelli e scogliere € 13,80
- ripascimenti € 12,00
- ponti € 6,50
- stabilizzazione frane € 18,00
- danni alluvionali € 15,70
- Protezione civile € 9,75
- ecc., ecc.
Po river: results

The graph shows the expenditure of the Ministry of Environmental Protection and the Regions for hydraulic assets and floods. The data is presented from 1955 to 2000 in millions of euros (constant 2000).

- **Assetto idraulico (MLLPP)**
- **Assetto idraulico (Regioni)**
- **Assetto idraulico Totale**
- **Straordinarie per alluvioni (MLLPP)**
- **Straordinarie per alluvioni (Regioni)**
- **Straordinarie per alluvioni Totale**
PUT in SAFE conditions... but paradoxically
...increases risk
- Exports hazards elsewhere
- Induces fake safety and increase potential damage
- Increases system FRAGILITY
- Moreover... is VERY COSTLY and increasingly
 and dumps costs on future generations: which sustainability??

Hydraulic approach: summary

Centro Italiano per la Riqualificazione Fluviale

NOT SOLVED !!!
...River incides and narrows
bridges break down
...reduction of solid flow \(\rightarrow\) coastal erosion

Marina di Massa

pennelli + scogliere soffolte

benefits: private

costs: public
...canalization effect \rightarrow loss of aquatic and terrestrial habitats
CIRF is a private, independent, cultural, technical-scientific, and non-profit organisation founded in 1999 by 10 “technicians” with the MISSION of:

promoting river restoration to improve the state of water courses
MAIN ACTIVITIES

- EDUCATION
 - Courses
 - Study trips
 - Opinion documents
 - Guidelines
 - Meetings/Seminars
 - Pilot Projects
 - Studies
- INFORMATION
- AWARENESS RISING
- RESEARCH
- INT. COOPERATION

Centro Italiano per la Riqualificazione Fluviale
2° Convegno italiano sulla riqualificazione fluviale
RIQUALIFICAZIONE FLUVIALE E GESTIONE DEL TERRITORIO
VALURI: saving money through RR, even addressing flood risk
A general evaluation approach applied to Chiese river (Po river basin, Italy)

Andrea Nardini
Website: www.cirf.org
Email: a.nardini@cirf.org

Finanziamento: FondazioneCARIPLO
Partners: Autorità di bacino del Po; Università di Udine
OBJECTIVEs

- is restoring rivers really DESIRABLE also to face RISK in MEDITERRANEAN countries?
- how to EVALUATE in an integral fashion alternatives -even daring (RR)- able to address hydraulic RISK (flooding, bank erosion,..)
MESSAGE

■ RR in many cases is the best way to address efficiently the hydro-morphological risk ALSO in Mediterranean countries, where flooding is generally associated with fluvial dynamic and débris flows impacts (not just flooding)

■ There is URGENT need to implement a network of RIVER CORRIDORS as the best preventive measure, before land use change will enormously increase potential damages

■ Urban development can take advantage of conserving water courses, both avoiding flood risk and increasing the welfare of citizens (recreation, aesthetics, asset value...)

■ Evaluating river setting alternatives in an integral, structured fashion can greatly help to make informed decisions
Case study on river CHIESE (TN, BS, MN)
River CHIESE (TN, BS, MN)
- catchment area: 1400 km²
- length: 180 km
- studied reach: 80 km
- average flow: 33 m³/s
- Q flood (Tr=200): 750 m³/s
- Vol. lake Idro: TOT 747 Mm³
 NET 75.5 Mm³
SOLUTIONS: toolbox of POSSIBLE OPTIONS

- Works (costruction + OMR): dismantle; not implement; implement (already foreseen or not –“environmentalized”)
- Morpho modifications of river bed, rehabilitation of hydraulic annexes, ...etc
- Reduction of vulnerability: adapting buildings and behaviours (....warning)
- Delocalization
- Changing land use suitability
- Management mechanisms (indemnization, insurance, incentives, community fund.....,)
DEFINITION of the ALTERNATIVES: ALT_Base*
DEFINITION of the ALTERNATIVEs CHIESE

- **ALT-zero**: (current state kept but ADAPTING critical points)
- **ALT-SdF**: put in "safe conditions", keeping current land and water uses
- **ALT-base**: try to minimize OMR cost of works, but with minimum disturbance to urban and agricultural setting, while improving nature → protect urban settlements; allow agricultural flooding; mobilize partly river bed avoiding dismissal of weirs; switch needed longitud. defenses with bio-engineering; keep weirs below bridges
- **ALT-daring**: as ALT-base, but more nature: eliminates also longitud. defences not impacting urban (→ dismantels also some diversion weirs); keep weirs below bridges; dismiss also main levees in front of Oglio river
PARADIGMS to address RISK

A) Put in safe conditions (Q_{200})

B) Min TOT Risk

C) Max net Benefit (or total Cost)

D) Max Quality of Life (L)

A) Under the constraint:

$R_{200}(u) = 0$

$u \in U$

B) Under the constraint:

$C(u) \leq C_{\text{max}}$

$u \in U$

C) Under the constraint:

$B(u) - C(u) \leq \min [R_T(u) + C(u)]$

$u \in U$

D) Under the constraint:

$L(u) \equiv \max [N(u), -R_T(u), -C(u)]$

$u \in U$

$u \in U$
Approach d) multiobjective (QoL): integrated, three-stage evaluation, based on the Quality of Life (QoL) concept:

Stage iii) Strategic evaluation:
- QoL criteria:
 - synthesis of stakeholders’ satisfaction (from Stage ii)
 - satisfaction of the “outer world”:
 - flood peaks propagation
 - altered solid transport flux exported downstream
 - ...

- Justice criteria:
 - equity of distribution of pros and cons on stakeholders
 - conservation of natural capital (N) for future generations
 - ...

Stage ii) Conflict management evaluation: assessment of stakeholders’ satisfaction according to their own perception and multicriteria negotiation

Stage i) Technical evaluation: assessment of multiple declared key objectives: Nature (river ecological status N), investment and management Costs (C), total Risk (R), Social disturbance (S), etc...

Approach c) – Net benefit B_N maximization (ECBA): synthesis of (at least) tangible benefits (risk reduction) and costs $\rightarrow \min (R_\infty + C)$
Approach d) multiobjective (QoL): integrated, three-stage evaluation, based on the Quality of Life (QoL) concept:

Stage iii) Strategic evaluation:

QoL criteria:
- synthesis of stakeholders’ satisfaction (from Stage ii)
- satisfaction of the “outer world”:
 - flood peaks propagation
 - altered solid transport flux exported downstream
 - ...

Justice criteria:
- equity of distribution of pros and cons on stakeholders
- conservation of natural capital (N) for future generations
- ...

Stage ii) Conflict management evaluation: assessment of stakeholders’ satisfaction according to their own perception and multicriteria negotiation

Stage i) Technical evaluation: assessment of multiple declared key objectives: Nature (river ecological status N), investment and management Costs (C), total Risk (R), Social disturbance (S), etc.

Approach c) – Net benefit B_N maximization (ECBA): synthesis of (at least) possible benefits (risk reduction) and costs $\rightarrow \min (R_\infty + C)$
EVALUATION : RESULTS CBA ALT_Base

Evaluation horizon \(T = 50 \) years; discount rate = 5%; OMR: “CIRF”

<table>
<thead>
<tr>
<th>ITEM</th>
<th>BENEFIT</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMR savings from works to dismiss (OMR) and (OMR+invest.) of works not being implemented</td>
<td>185.27</td>
<td></td>
</tr>
<tr>
<td>Investment and OMR of new works to be made</td>
<td></td>
<td>65.84</td>
</tr>
<tr>
<td>(\Delta) Maintenance of river bed</td>
<td>17.72</td>
<td></td>
</tr>
<tr>
<td>(\Delta) Flooding risk</td>
<td></td>
<td>22.16</td>
</tr>
<tr>
<td>(\Delta) Land loss risk because of erosion and wandering</td>
<td>7.09</td>
<td></td>
</tr>
<tr>
<td>(\Delta) Land-use value from irrigated to dry agriculture</td>
<td>1.26</td>
<td></td>
</tr>
<tr>
<td>Loss from hydropower production because of modification of weirs or river elevation</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>TOT</td>
<td>211.45</td>
<td>89.25</td>
</tr>
<tr>
<td>122.2 (M Euro)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Approach d) multiobjective (QoL): integrated, three-stage evaluation, based on the Quality of Life (QoL) concept:

Stage iii) Strategic evaluation:
QoL criteria:
- synthesis of stakeholders’ satisfaction (from Stage ii)
- satisfaction of the “outer world”:
 - flood peaks propagation
 - altered solid transport flux exported downstream
 -

Justice criteria:
- equity of distribution of pros and cons on stakeholders
- conservation of natural capital (N) for future generations
-

Stage ii) Conflict management evaluation: assessment of stakeholders’ satisfaction according to their own perceptions and multiplicities in negotiation.

Stage i) Technical evaluation: assessment of multiple declared key objectives: Nature (river ecological status N), investment and management Costs (C), total Risk (R), Social disturbance (S), etc...

Approach c) – Net benefit B_N maximization (ECBA): synthesis of (at least) tangible benefits (risk reduction) and costs $\rightarrow \min (R_\infty + C)$
EVALUATION: approach:
MULTI-OBJECTIVE: Level I:
C+F+D, N: AGGREGATION

Orizzonte T = 50 anni; tasso sconto r= 5%; OMR: “CIRF”
✓ **Approach d)** - **Objective (QoL):** Integrated, stage-wise evaluation, based on the Quality of Life (QoL) concept:

Stage iii) Strategic evaluation:

QoL criteria:
- synthesis of stakeholders’ satisfaction (from Stage ii)
- satisfaction of the “outer world”:
 - flood peaks propagation
 - altered solid transport flux exported downstream
 -

Justice criteria:
- equity of distribution of pros and cons on stakeholders
- conservation of natural capital (N) for future generations
-

Stage ii) Concept management evaluation: assessment of stakeholders’ satisfaction according to their own perception and multicriteria negotiation

✓ **Stage i) Technical evaluation:** assessment of multiple declared key objectives: Nature (river ecological status N), investment and management Costs (C), total Risk (R), Social disturbance (S), etc...

✓ **Approach c) – Net benefit B_N maximization (ECBA):** synthesis of (at least) tangible benefits (risk reduction) and costs \(\rightarrow \min (R_\infty + C) \)
EVALUATION: results
pseudo Level III

<table>
<thead>
<tr>
<th>QoL stakeholders</th>
<th>(R^F + R_M)</th>
<th>total RISK (hydraulic (R^F) + morphological (R_M))</th>
<th>ME/year</th>
<th>ALT_0</th>
<th>ALT_SdF</th>
<th>ALT_Base*</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R^F_{\text{failure}})</td>
<td>fragility (residual risk)</td>
<td>-</td>
<td>2.52</td>
<td>2.11</td>
<td>3.30</td>
<td></td>
</tr>
<tr>
<td>(S_{\text{agro-sett.}})</td>
<td>social disturbance: land-value loss</td>
<td>ME/year</td>
<td>2.06</td>
<td>1.68</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>(S_{\text{water-use}})</td>
<td>social disturbance: hydropower loss</td>
<td>ME/year</td>
<td>0.00</td>
<td>0.07</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>(C)</td>
<td>financial sustainability: total cost (invest.+OMR)</td>
<td>ME/year</td>
<td>16.95</td>
<td>17.05</td>
<td>9.83</td>
<td></td>
</tr>
<tr>
<td>(B_N)</td>
<td>economic efficiency: net benefit</td>
<td>ME/year</td>
<td>0.33</td>
<td>6.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Justice</td>
<td>externalities out of basin</td>
<td></td>
<td>3 peak reduction</td>
<td>1 solid flow</td>
<td>1 peak reduction</td>
<td>0 solid flow</td>
</tr>
<tr>
<td>(N)</td>
<td>Nature conservation (ecosystem status)</td>
<td>-</td>
<td>0.48</td>
<td>0.48</td>
<td>0.64</td>
<td></td>
</tr>
</tbody>
</table>

Orizzonte \(T = 50 \) anni; tasso sconto \(r = 5\% \) ; OMR: “CI RF”

ASSUMPTIONS and LIMITATIONS:
- Flooded zones affected by: i) scheme quasi-2D (lateral flood channels); ii) expert-based method to correct for works effect, after spatial extrapolation
- Dismission of works @ no cost (just triggering); future Morphology at the equilibrium (no transition phase considered); …
Assumptions and uncertainties; but at least the Thesis is not discarded and seems to hold → there is space for GREEN/BLUE revolution → significant savings and better environment, while managing risk!

Methodology captures the many factes of evaluation and is applicable

HMWB (Heavily Modified Water Bodies) → this label should be reviewed in several cases if all benefits are considered!

Does better than the “put in safe condition” criterion: protect only what “…is flooded often, it’s highly worth and vulnerable…seen in a system view; and protect the target asset rather than separating the river”

Cost Benefit analysis: powerful tool to guide the design of more efficient ALTeratives → give meaning to the WFD effort of valuating the risk R

NEED for:

- Participation and negotiation (Level II) : perceived risk ≠ objective risk /WHO bears damages?
- Administrative-financial tools to manage the change
OPPORTUNITY to coordinate WFD e FLOOD directives: HMWB
REFERENCES:

Website: www.cirf.org
Email: info@cirf.org; a.nardini@cirf.org